Polynomial Equations and Graphs

Definition:
A polynomial function is any function that can be written in the form
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o}$
The leading term of the polynomial above is $a_{n} x^{n}$
The leading coefficient of the polynomial above is a_{n} The degree of the polynomial above is n.

There are many forms a given polynomial can be written in, but two common forms are expanded form and factored form.
$x^{3}-2 x^{2}-5 x+6$ is the same polynomial as $(x-1)(x-3)(x+2)$

Zeros of a function:

-If $f(k)=0$ then k is said to be a zero of the function \boldsymbol{f}.
-If k is an input value of the function f that returns an output of 0 then c is a zero of the function \boldsymbol{f}.
-If f contains the point $(k, 0)$ then c is a zero of the function \boldsymbol{f}.

Verify that 3 is a zero of the function $f(x)=2 x^{3}-5 x^{2}-9$

If k is a zero of the function $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o}$ then we also say that k is a root or a solution of the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o}=0$.

Verify that $x=2+i$ is a solution to the equation $x^{2}=4 x-5$

End Behaviors for the Graph of a Polynomial:

Consider the value of each term of the polynomial as x approaches infinity.

$$
\begin{aligned}
& f(x)=-2 x^{3}+4 x^{2}+5 x+2 \\
& f(1)=-2+4+5+2=9 \\
& f(10)=-2000+400+50+2=-1548 \\
& f(100)=-2000000+40000+500+2=-1959498
\end{aligned}
$$

Consider the value of each term of the polynomial as x approaches negative infinity.

$$
\begin{aligned}
& f(x)=-2 x^{3}+4 x^{2}+5 x+2 \\
& f(-1)=2+4-5+2=3 \\
& f(-10)=2000+400-50+2=2352 \\
& f(-100)=2000000+40000-500+2=-2039502
\end{aligned}
$$

To determine the right-end behavior of a polynomial function you need to determine if the leading term of the polynomial is positive or negative when x is positive.

To determine the left-end behavior of a polynomial function you need to determine if the leading term of the polynomial is positive or negative when x is negative.

Determine the end behavior for the following polynomial functions:
$f(x)=-2 x^{4}-3 x^{3}+2 x+1$

$$
p(x)=4 x^{5}+7 x^{4}-3 x^{3}+2 x^{2}-10 x+4
$$

$$
h(x)=-\frac{2}{3} x^{7}+3 x^{4}-2 x^{2}+11 x-4
$$

Examples:
Determine the end behaviors for the polynomial functions below and then draw the graphs of the following polynomials:
$f(x)=2(x-2)(x+1)^{2}$

$h(x)=-(x+1)^{2}(x-1)^{2}$

$$
p(x)=x^{3}-4 x
$$

Solve the inequality $x^{3}>4 x$

Solve the inequality $2(x-2)(x+1)^{2}>0$

